Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 429784
Title Feasibility Study on Combined Production of Algae and Tomatoes in a Dutch Greenhouse
Author(s) Slager, A.A.; Sapounas, A.; Henten, E.J. van; Hemming, S.
Source In: Proceedings of the 7th International Symposium on Light in Horticultural Systems (Book of Abstracts). - Leuven : ISHS - p. 87 - 87.
Event Leuven : ISHS VII International Symposium on Light in Horticultural Systems, Wageningen, 2012-10-15/2012-10-18
Department(s) WUR GTB Tuinbouw Technologie
Farm Technology Group
PE&RC
Publication type Abstract in scientific journal or proceedings
Publication year 2012
Abstract The Dutch horticultural sector shows interest in production of microalgae. When microalgae and a tomato crop are produced in the same greenhouse, both shared advantage of and competition for resources will occur. In this study a model was developed to predict algae biomass production in tubular photobioreactors (PBR) and to assess the economic feasibility of combined production of tomatoes and algae. The effects of the location of the PBR in the greenhouse, the diameter of the PBR tubes, the algae biomass concentration, the light intensity and the PBR temperature were considered. The economic feasibility of combined production was calculated, taking into account both investment and running costs. Three possible locations for the PBRs were considered. The most sensitive growth factor influencing economics of the systems was light. Economic feasibility of algae production underneath the tomato crop was poor; a minimum unit biomass production cost of 70 € kg-1 dry matter (DM) was calculated. Increasing the light intensity by decrease of the tomato LAI by extra leaf picking increases economic feasibility of algae production underneath the crop. Economic feasibility of algae production in a separated compartment was computed to be good with a minimum unit biomass production cost of 11 € kg-1 DM. The developed model can function as a basis for further research on combined production of a crop and microalgae in Dutch greenhouses
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.