Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 431291
Title Hybrid Monte Carlo self-consistent field approach to model a thin layer of a polyelectrolyte gel near an adsorbing surface
Author(s) Leermakers, F.A.M.; Bergsma, J.; Gucht, J. van der
Source The Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment, & General Theory 116 (2012)25. - ISSN 1089-5639 - p. 6574 - 6581.
Department(s) Physical Chemistry and Colloid Science
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) adsorption - polymers - optimization - interface - volume - ions
Abstract The use of thin layers of a surface bound (polyelectrolyte) hydrogels for measuring the concentration of metal ions from electrolyte solutions is our motivation for modeling such hydrogels. The gels are composed of polymeric species with conformational degrees of freedom on the nanometer scale. The polymer conformations are affected by the presence of cross-links in the gel on a five to ten times larger length scale, and the repulsive interactions generated by the charges along the chains. Here we present a hybrid computational Monte Carlo Self-consistent field (MC-SCF) approach to model such hydrogels. The SCF formalism is used to evaluate the conformational properties of the chains, implementing a freely jointed chain model, in between featureless cross-links. The Monte Carlo simulation method is used to sample the (restricted) translational degrees of freedom of the cross-links in the gel. We consider the case that the polymers in the gel have an affinity for surface positioned at the edge of the simulation volume. The polymer density decays as a power-law from the surface to the gel-density with an exponent close to -4/3. The gel features relatively large density fluctuations which is natural for a gel with a low density (f ˜ 0.035), a low degree of cross-linking (average of three chainparts per cross-link), and relatively large chains (N = 50) in between the cross-links. Some parts of the gel can break loose from the gel and sample the adjoining volume. Representative snapshots exemplify large density fluctuations, which explain the large pore size distribution observed in experimental counterparts.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.