Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 431331
Title In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions
Author(s) Tzoumaki, M.V.; Moschakis, T.; Scholten, E.; Biliaderis, C.G.
Source Food & Function 4 (2013)1. - ISSN 2042-6496 - p. 121 - 129.
DOI https://doi.org/10.1039/C2FO30129F
Department(s) Physics and Physical Chemistry of Foods
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) beta-lactoglobulin - cholesterol absorption - emulsified lipids - pancreatic lipase - fat digestion - chitosan - dispersions - interfaces - droplets - delivery
Abstract Chitin nanocrystals (ChN) have been shown to form stable Pickering emulsions. These oil-in-water emulsions were compared with conventional milk (whey protein isolate, WPI, and sodium caseinate, SCn) protein-stabilized emulsions in terms of their lipid digestion kinetics using an in vitro enzymatic protocol. The kinetics of fatty acid release were evaluated as well as the change in oil droplet size of the respective emulsions during lipid digestion. The interfacial pressure was measured by addition of the duodenal components using drop tensiometry and the electrical charge of the oil droplets was also assessed, in an attempt to relate the interfacial properties with the stability of the emulsions towards lipolysis. Lipid hydrolysis in the ChN-stabilized emulsion was appreciably slower and the plateau values of the total concentration of fatty acids released were much lower, compared to the WPI- and SCn-stabilized emulsions. Moreover, the ChN-stabilized emulsions were relatively stable to coalescence during lipid digestion, whereas the WPI- and SCn-stabilized emulsions exhibited a significant increase in their droplet size. On the other hand, no major differences were shown among the different emulsion samples in terms of their interfacial properties. The increased stability of the ChN-stabilized emulsions towards lipolysis could be attributed to several underlying mechanisms: (i) strong and irreversible adsorption of the chitin nanocrystals at the interface that might inhibit an extensive displacement of the solid particles by bile salts and lipase, (ii) network formation by the nanocrystals in the bulk (continuous) phase that may reduce lipid digestion kinetics, and (iii) the ability of chitin, and consequently of ChNs, to impair pancreatic lipase activity. The finding that ChNs can be used to impede lipid digestion may have important implications for the design and fabrication of structured emulsions with controlled lipid digestibility that could provide the basis for the development of novel products that may promote satiety, reduce caloric intake and combat obesity.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.