Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 431505
Title Impact of aerosol heat radiation absorption on the dynamics of an atmospheric boundary layer in equilibrium
Author(s) Barbaro, E.W.; Vilà-Guerau de Arellano, J.; Krol, M.C.; Holtslag, A.A.M.
Source In: Proceedings of the 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, American Meteorological Society, 09-13 July 2012, Boston, USA. - American Meteorological Society - p. 9A.3 - 9A.3.
Event 20th Symposium on Boundary Layers and Turbulence/18th Conference on Air-Sea Interaction, Boston, 2012-07-09/2012-07-13
Department(s) Meteorology and Air Quality
WIMEK
Publication type Contribution in proceedings
Publication year 2012
Abstract The objective of this work is to investigate the influence of the shortwave radiation (SW) absorption by aerosols on the dynamics and heat budget of the atmospheric boundary layer (ABL). This study is relevant for areas characterized by large concentrations of light-absorbing aerosol, which are known to warm up the ABL 2-10 K/day depending on the amount and vertical distribution of the aerosols. We investigate if aerosols, by warming the ABL and the entrainment zone, contribute to a destabilization of the thermal inversion layer, either by reducing the capping inversion or by stabilizing the lower part of the entrainment zone. The impact of the reduced amount of radiation reaching the surface due to aerosols SW absorption is taken into account. As such numerical experiments are carried out by using a large-eddy simulation (LES) model (DALES code) to study the ABL vertical structure and its time evolution. Mixed-layer theory (0-order bulk model - MXL) is also employed to support DALES results. A radiative transfer code (TUV) is used to calculate the impact of the aerosols absorption on the SW radiation field. The numerical simulations are made for a reference case of a dry, non-polluted free convective ABL in equilibrium, i.e. the boundary layer height is in steady-state. In addition, three other simulations are designed: average (AC), high and extreme aerosol concentrations. They differ from the reference case only by the increasing aerosol concentration (homogeneously distributed) within the ABL. An extra simulation (called TOP) is performed with the AC concentration placed only at the ABL top to investigate if the vertical distribution of aerosols plays a role in changing the entrainment zone dynamics. The simulations are integrated towards a new steady state. The DALES results indicate a shallower ABL for all simulations, compared to the reference case. The ABL-depth decreasing is even more pronounced for the TOP case. Different processes explain this decrease. At the surface, the reduction of SW, due to the aerosols absorption, leads to decrease the surface sensible heat flux (SH), and in consequence it yields to a shallower ABL. In turn, the aerosols absorption also weakens the capping inversion in all the experiments because of the aerosol heat absorption. The absorption also drives an increased stabilization of the upper region of the ABL. Stabilization and the reduced SH together suppress the weakening of the inversion layer, reducing the ABL height. Turbulence characteristics are further analyzed: first, the entrainment velocity increases when the aerosols are located at the top of ABL. The entrainment flux depth changes when aerosols are added, however its magnitude remains the same as for the control case, around 16%. Second, the stabilization below the ABL top leads to a reduction of the temperature variance.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.