Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 431703
Title Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement
Author(s) Gill, R.; Tian, L.; Somerville, W.R.C.; Ru, E.C. Le; Amerongen, H. van; Subramaniam, V.
Source The Journal of Physical Chemistry Part C: Nanomaterials and Interfaces 116 (2012)31. - ISSN 1932-7447 - p. 16687 - 16693.
DOI http://dx.doi.org/10.1021/jp305720q
Department(s) Biophysics
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) raman-scattering sers - field enhancement - optical antennas - hot-spots - surface - spectroscopy - molecule - nanoantennas - nanoshells - decay
Abstract The enhanced local fields around plasmonic structures can lead to enhancement of the excitation and modification of the emission quantum yield of fluorophores. So far, high enhancement of fluorescence intensity from dye molecules was demonstrated using bow-tie gap antenna made by e-beam lithography. However, the high manufacturing cost and the fact that currently there are no effective ways to place fluorophores only at the gap prevent the use of these structures for enhancing fluorescence-based biochemical assays. We report on the simultaneous modification of fluorescence intensity and lifetime of dye-labeled DNA in the presence of aggregated silver nanoparticles. The nanoparticle aggregates act as efficient plasmonic antennas, leading to more than 2 orders of magnitude enhancement of the average fluorescence. This is comparable to the best-reported fluorescence enhancement for a single molecule but here applies to the average signal detected from all fluorophores in the system. This highlights the remarkable efficiency of this system for surface-enhanced fluorescence. Moreover, we show that the fluorescence intensity enhancement varies with the plasmon resonance position and measure a significant reduction (300×) of the fluorescence lifetime. Both observations are shown to be in agreement with the electromagnetic model of surface-enhanced fluorescence.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.