Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 431906
Title A laboratory goniometer system for measuring reflectance and emittance anisotropy
Author(s) Roosjen, P.P.J.; Clevers, J.G.P.W.; Bartholomeus, H.; Schaepman, M.E.; Schaepman-Strub, G.; Jalink, H.; Schoor, R. van der; Jong, A. de
Source Sensors 12 (2012)12. - ISSN 1424-8220 - p. 17358 - 17371.
DOI http://dx.doi.org/10.3390/s121217358
Department(s) Laboratory of Geo-information Science and Remote Sensing
Nature Conservation and Plant Ecology
WUR GTB Tuinbouw Technologie
Alterra - Earth informatics
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) bidirectional reflectance - radiance data - albedo - field - brdf - algorithm - surface - model - acquisition - vegetation
Abstract In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.