Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 431907
Title Spectral estimation of soil properties in Siberian tundra soils and relations with plant species composition
Author(s) Bartholomeus, H.; Schaepman-Strub, G.; Blok, D.; Sofronov, R.; Udaltsov, S.
Source Applied and Environmental Soil Science 2012 (2012). - ISSN 1687-7667 - 13 p.
DOI http://dx.doi.org/10.1155/2012/241535
Department(s) Laboratory of Geo-information Science and Remote Sensing
Nature Conservation and Plant Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2012
Abstract Predicted global warming will be most pronounced in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to organic matter decomposition rates and associated carbon fluxes in Arctic permafrost soils will significantly impact the global carbon cycle. We explore the potential of soil spectroscopy to estimate soil carbon properties and investigate the relation between soil properties and vegetation composition. Soil samples are collected in Siberia, and vegetation descriptions are made at each sample point. First, laboratory-determined soil properties are related to the spectral reflectance of wet and dried samples using partial least squares regression (PLSR) and stepwise multiple linear regression (SMLR). SMLR, using selected wavelengths related with C and N, yields high calibration accuracies for C and N. PLSR yields a good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large within vegetation classes, but vegetation composition can be used for qualitative estimation of soil properties.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.