Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 431983
Title Resin secretory structures of Boswellia papyrifera and implications for frankincense yield
Author(s) Tolera, M.; Menger, D.; Sass, U.G.W.; Sterck, F.J.; Copini, P.; Bongers, F.
Source Annals of Botany 111 (2013)1. - ISSN 0305-7364 - p. 61 - 68.
DOI http://dx.doi.org/10.1093/aob/mcs236
Department(s) Forest Ecology and Forest Management
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) timber forest product - northern ethiopia - norway spruce - metema district - bark anatomy - tree size - conifers - biosynthesis - canals - plants
Abstract Frankincense, a gum-resin, has been tapped from Boswellia papyrifera trees for centuries. Despite the intensive tapping and economic interest of B. papyrifera, information on the resin secretory structures, which are responsible for synthesis, storage and transport of frankincense, is virtually absent. This study describes the type, architecture and distribution of resin secretory structures of B. papyrifera and its relevance for the ecophysiology and economic use of the tree. The type and architecture of resin secretory structures present in bark and wood was investigated from transversal, tangential and radial sections of bark and wood samples. The diameter and density (number of resin canals mm(2)) of axial resin canals were determined from digital images of thin sections across the different zones of inner bark. Resin canals form a three-dimensional network within the inner bark. Yet, the intact resin-conducting and producing network is on average limited to the inner 66 mm of the inner bark. Within the inner bark, the density of non-lignified axial resin canals decreases and the density of lignified resin canals increases from the vascular cambium towards the outer bark. In the wood, only radial resin canals were encountered. Frankincense tapping techniques can be improved based on knowledge of bark anatomy and distribution and architecture of resin secretory structures. The suggested new techniques will contribute to a more sustainable frankincense production that enhances the contribution of frankincense to rural livelihoods and the national economy.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.