Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 432778
Title A physiologically based kinetic model for bacterial sulfide oxidation
Author(s) Klok, J.B.M.; Graaff, C.M. de; Bosch, P.L.F. van den; Boelee, N.C.; Keesman, K.J.; Janssen, A.J.H.
Source Water Research 47 (2013)2. - ISSN 0043-1354 - p. 483 - 492.
DOI https://doi.org/10.1016/j.watres.2012.09.021
Department(s) Sub-department of Environmental Technology
Bioprocess Engineering
Systems and Control Group
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) afvalwaterbehandeling - biotechnologie - zwavelwaterstof - oxidatie - ontzwaveling - alkalibacillus haloalkaliphilus - microbiële fysiologie - afvalwaterbehandelingsinstallaties - waste water treatment - biotechnology - hydrogen sulfide - oxidation - desulfurization - microbial physiology - waste water treatment plants - sulfur-oxidizing bacteria - biologically produced sulfur - dissolved sodium sulfide - parameter-estimation - hydrogen-sulfide - soda lakes - bioreactors - thiosulfate - mechanisms - pathways
Categories Biotechnology (General) / Waste Water Treatment
Abstract In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis–Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S0 formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.