Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 433728
Title Mapping salinity stress in sugarcane fields with hyperspectral satellite imagery
Author(s) Hamzeh, S.; Naseria, A.A.; Alavi Panah, S.K.; Mojaradic, B.; Bartholomeus, H.; Herold, M.
Event SPIE 2012 Conference on Remote Sensing for Agriculture, Ecosystems and Hydrology XIV, Edinburgh, UK, 2012-09-24/2012-09-24
Department(s) Laboratory of Geo-information Science and Remote Sensing
Publication type Contribution in proceedings
Publication year 2012
Abstract Soil salinity is a huge problem negatively affecting physiological and metabolic processes in plant life, ultimately diminishing growth and yield. An area with more than 70,000 ha sugarcane farming and its by-products are the major agricultural activities in the Khuzestan province, in the southwest of Iran. Therefore, mapping and identification of soil salinity is the most important issue to improve management of large scale crop production in this area. Besides labour intensive fieldwork, remote sensing is the most suitable technique to assess soil salinity for large areas. This study was carried out to investigate the capability of Hyperion spaceborne hyperspecteral data for mapping the salinity stress in the sugarcane fields and determine the best method to classify soil salinity into 3 classes (low, moderate and high salinity). For this purpose the capability of different classification methods like support Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum Distance (MD) and Maximum Likelihood (ML) in conjunction with different band combinations (all bands, principle component analysis (PCA), Vegetation Indices) as an input data was performed. Results indicated that best method for classification is SVM classifier when we use all bands or PCA(1-5) as an input data for classification with an overall accuracy and kappa coefficient of 78.7% and 0.68 respectively. Therefore, salinity stress can be classified in agricultural fields using Hyperion satellite imagery with good accuracy and salinity map can be very useful for management of agricultural activity and increase the crop production.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.