Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 435821
Title Influence of buffer composition on the distribution of inkjet printed protein molecules and the resulting spot morphology
Author(s) Mujawar, L.H.; Amerongen, A. van; Norde, W.
Source Talanta 98 (2012). - ISSN 0039-9140 - p. 1 - 6.
Department(s) Physical Chemistry and Colloid Science
FBR Bioconversion
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) bovine serum-albumin - antibody microarrays - surfaces - performance - adsorption
Abstract Producing high quality protein microarrays on inexpensive substrates like polystyrene is a big challenge in the field of diagnostics. Using a non-contact inkjet printer we have produced microarrays on polystyrene slides for two different biotinylated biomolecules, bovine serum albumin (BSA–biotin) and immunoglobulin-G (IgG–biotin), and studied the influence of buffer (composition and pH) on the spot morphology and signal intensity. Atomic force microscopy revealed the morphological pattern of the (biomolecule) spots printed from phosphate buffer (pH 7.4), phosphate buffered saline (pH 7.4) and carbonate buffer (pH 9.6). The spots showed an irregular crust-like appearance when printed in phosphate buffered saline (pH 7.4), mainly due to the high NaCl content, whereas spots of biomolecules printed in carbonate buffer (pH 9.6) showed a smooth morphology. In addition, the rinsing of these dried spots led to the loss of a considerable fraction of the biomolecules, leaving behind a small fraction that is compatible with the (mono)layer. It was confirmed by confocal laser microscopy that the quality of the spots with respect to the uniformity and distribution of the biomolecules therein was superior when printed in carbonate buffer (pH 9.6) as compared to other buffer systems. Particularly, spotting in PBS yielded spots having a very irregular distribution and morphology.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.