Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 436045
Title Biomimetic mineralization of calcium phosphate on a functionalizaed porous silicon carbide biomaterial
Author(s) Dey, A.; Hoogen, C.J. van de; Rosso, M.; Lousberg, N.J.H.G.M.; Hendrix, M.M.R.M.; Friedrich, H.; Ramirez Rico, J.; Zuilhof, H.; With, G. de; Sommerdijk, N.A.J.M.
Source ChemPlusChem 77 (2012)8. - ISSN 2192-6506 - p. 694 - 699.
DOI https://doi.org/10.1002/cplu.201200118
Department(s) Laboratory for Organic Chemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) octacalcium phosphate - biomedical applications - bioactive glass - in-vitro - hydroxyapatite - bone - transformation - ceramics - crystallization - interfaces
Abstract Porous biomorphic silicon carbide (bioSiC) is a structurally realistic, high-strength, and biocompatible material which is promising for application in load-bearing implants. The deposition of an osteoconductive coating is essential for further improvement of its integration with the surrounding tissue. A new strategy towards biomimetic calcium phosphate coatings on bioSiC is described. X-ray photoelectron spectroscopy (XPS) analysis shows that using 10-undecenoic acid methyl ester a covalently bound monolayer can be synthesized on the surface of the bioSiC. After hydrolysis it exposes carboxylic acid groups that promote the selective nucleation and growth of a very well-defined crystalline layer of calcium phosphate. The resulting calcium phosphate coating is characterized by X-ray diffraction and electron microscopy techniques. Further, ion beam imaging is employed to quantify the mineral deposition meanwhile, three-dimensional dual-beam imaging (FIB/SEM) is used to visualize the bioSiC/mineral interface. The monolayer is show to actively induce the nucleation of a well-defined and highly crystalline mixed octacalcium phosphate/hydroxyapatite (OCP/HAP) coating on implantable bioSiC substrates with complex geometry. The mild biomimetic procedure, in principle, allows for the inclusion of bioactive compounds that aid in tissue regeneration. Moreover, the mixed OCP/HAP phase will have a higher solubility compared to HAP, which, in combination with its porous structure, is expected to render the coating more reabsorbable than standard HAP coatings.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.