Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 437570
Title Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures
Author(s) Eerten-Jansen, M.C.A.A. van; Heijne, A. ter; Grootscholten, T.I.M.; Steinbusch, K.J.J.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N.
Source ACS sustainable chemistry & engineering 1 (2013)5. - ISSN 2168-0485 - p. 513 - 518.
DOI https://doi.org/10.1021/sc300168z
Department(s) Sub-department of Environmental Technology
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) microbial electrolysis cells - fuel-cells - hydrogen - biomass - conversion - ethanol - reduction - transport - membranes - butyrate
Abstract The use of mixed cultures to convert waste biomass into medium chain fatty acids, precursors for renewable fuels or chemicals, is a promising route. To convert waste biomass into medium chain fatty acids, an external electron donor in the form of hydrogen or ethanol needs to be added. This study investigated whether the cathode of a bioelectrochemical system can be used as the electron donor for the conversion of acetate into medium chain fatty acids. We show that medium chain fatty acids were produced in a bioelectrochemical system at -0.9 V vs. NHE cathode potential, without addition of an external mediator. Caproate, butyrate and smaller fractions of caprylate were the main products formed from acetate. In-situ produced hydrogen was likely involved as an electron donor for the reduction of acetate. Electron and carbon balances revealed that 45% of the electrons in electric current and acetate, and 31% of the carbon from acetate were recovered in the formed products. This study showed for the first time production of medium chain fatty acids caproate and caprylate from acetate at the cathode of bioelectrochemical systems, and offers new opportunities for application of bioelectrochemical systems.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.