Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 440209
Title Coupled daily streamflow and water temperature modelling in large river basins
Author(s) Vliet, M.T.H. van; Yearsley, J.R.; Franssen, W.H.P.; Ludwig, F.; Haddeland, I.; Kabat, P.
Source Hydrology and Earth System Sciences 16 (2012). - ISSN 1027-5606 - p. 4303 - 4321.
DOI http://dx.doi.org/10.5194/hess-16-4303-2012
Department(s) Earth System Science
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) climate-change impact - new-brunswick - soil-temperature - catamaran brook - neural-networks - air-temperature - thermal regime - forest canopy - united-states - fraser-river
Abstract Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. for electricity and drinking water production) and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully applied to small catchments and short time periods, much less work has been done at large spatial and temporal scales. We present a physically based modelling framework for daily river discharge and water temperature simulations applicable to large river systems on a global scale. Model performance was tested globally at 1/2 × 1/2° spatial resolution and a daily time step for the period 1971–2000. We made specific evaluations on large river basins situated in different hydro-climatic zones and characterized by different anthropogenic impacts. Effects of anthropogenic heat discharges on simulated water temperatures were incorporated by using global gridded thermoelectric water use datasets and representing thermal discharges as point sources into the heat advection equation. This resulted in a significant increase in the quality of the water temperature simulations for thermally polluted basins (Rhine, Meuse, Danube and Mississippi). Due to large reservoirs in the Columbia which affect streamflow and thermal regimes, a reservoir routing model was used. This resulted in a significant improvement in the performance of the river discharge and water temperature modelling. Overall, realistic estimates were obtained at daily time step for both river discharge (median normalized BIAS = 0.3; normalized RMSE = 1.2; r = 0.76) and water temperature (median BIAS = -0.3 °C; RMSE = 2.8 °C; r = 0.91) for the entire validation period, with similar performance during warm, dry periods. Simulated water temperatures are sensitive to headwater temperature, depending on resolution and flow velocity. A high sensitivity of water temperature to river discharge (thermal capacity) was found during warm, dry conditions. The modelling approach has potential to be used for risk analyses and studying impacts of climate change and other anthropogenic effects (e.g. thermal pollution, dams and reservoir regulation) on large rivers.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.