Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 440385
Title What multiscale environmental drivers can best be discriminated from a habitat index derived from a remotely sensed vegetation time series?
Author(s) Coops, N.C.; Schaepman, M.E.; Mücher, C.A.
Source Landscape Ecology 28 (2013)8. - ISSN 0921-2973 - p. 1529 - 1543.
Department(s) Alterra - Earth informatics
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) earth observation data - land-cover data - species richness - climate-change - global patterns - diversity - scale - distributions - suitability - energy
Abstract Understanding which environmental conditions are critical for species survival is a critical, ongoing question in ecology. These conditions can range from climate, at the broadest scale, through to elevation and other local landscape conditions, to fine scale landscape patterns of land cover and use. Remote sensing is an ideal technology to monitor and assess changes in these environmental conditions at a variety of spatial and temporal scales, with many studies focusing on the physiological state of vegetation derived from time series of satellite measurements. As vegetation occurs within specific climatic zones, over certain soil, terrain, and land cover types, it can be difficult to decipher the influence of the underlying role of climate, topography, soil, and land cover on the observed vegetation signal. In this article, we specifically addressed this problem by asking the question: what is the relative impact and importance of these different scales of environmental drivers on the temporal and spatial patterns observed on a habitat index derived from remotely sensed data? To find the solution, we utilized a SPOT VEGETATION-normalized difference vegetation index time series of Europe to create a remote-sensing-derived habitat index, which incorporates aspects of productivity, seasonality, and cover. We then compared the observed temporal and spatial variations in the index to a pan-Europe terrestrial classification system, which explicitly incorporates variations in climate, terrain, soil parent material, land cover, and use. Results indicated that the most accurate level of discrimination from the habitat index was at the broadest level of the hierarchy, climate, while the poorest degree of discrimination was associated with elevation. In terms of similarity on the index across time and space, we found that arable and forest cover classes were more similar across elevation and parent materials than across other land cover types within them. Analyzing the remote-sensing index, at multiple scales, provides significant insights into the drivers of satellite-derived greenness indices, as well as highlights the benefit and cautions associated with linking satellite-derived indirect indicators to species distribution modeling and biodiversity.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.