Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 440886
Title Adhesion and Nanomechanics of Pili from the Probiotic Lactobacillus rhamnosus GG
Author(s) Tripathi, P.; Beaussart, A.; Alsteens, D.; Dupres, V.; Claes, I.; Ossowski, I. von; Vos, W.M. de; Palva, A.; Lebeer, S.; Vanderleyden, J.; Dufrene, Y.F.
Source ACS Nano 7 (2013)4. - ISSN 1936-0851 - p. 3685 - 3697.
DOI http://dx.doi.org/10.1021/nn400705u
Department(s) Microbiological Laboratory
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) atomic-force-microscopy - coli p-pili - functional-analysis - escherichia-coli - stabilizing isopeptide - streptococcus-pyogenes - gastrointestinal-tract - mechanical force - binding-protein - antigen-i/ii
Abstract Knowledge of the mechanisms by which bacterial pili adhere to host cells and withstand external forces is critical to our understanding of their functional roles and offers exciting avenues in biomedicine for controlling the adhesion of bacterial pathogens and probiotics. While much progress has been made in the nanoscale characterization of pili from Gram-negative bacteria, the adhesive and mechanical properties of Gram-positive bacterial pili remain largely unknown. Here, we use single-molecule atomic force microscopy to unravel the binding mechanism of pili from the probiotic Gram-positive bacterium Lactobacillus rhamnosus GG (LGG). First, we show that SpaC, the key adhesion protein of the LGG pilus, is a multifunctional adhesin with broad specificity. SpaC forms homophilic trans-interactions engaged in bacterial aggregation and specifically binds mucin and collagen, two major extracellular components of host epithelial layers. Homophilic and heterophilic interactions display similar binding strengths and dissociation rates. Next, pulling experiments on living bacteria demonstrate that LGG pili exhibit two unique mechanical responses, that is, zipper-like adhesion involving multiple SpaC molecules distributed along the pilus length and nanospring properties enabling pili to resist high force. These mechanical properties may represent a generic mechanism among Gram-positive bacterial pili for strengthening adhesion and withstanding shear stresses in the natural environment. The single-molecule experiments presented here may help us to design molecules capable of promoting or inhibiting bacterial-host interactions
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.