Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 441232
Title Merino ewes can be bred for body weight change to be more tolerant to uncertain feed supply
Author(s) Rose, I.J.; Kause, A.; Mulder, H.A.; Werf, J.H.J. van der; Thompson, A.N.; Ferguson, M.B.; Arendonk, J.A.M. van
Source Journal of Animal Science 91 (2013)6. - ISSN 0021-8812 - p. 2555 - 2565.
DOI https://doi.org/10.2527/jas.2012-5539
Department(s) Animal Breeding and Genetics
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) random regression-models - parameter-estimation - heat-stress - environment - covariance - liveweight - survival - climate - cattle
Abstract Sheep in Australia experience periods with different feed supply causing them to gain and lose BW during the year. It is more efficient if ewes lose less BW during periods of poor nutrition and gain more BW during periods of good nutrition. We investigated whether BW loss during periods of poor nutrition and BW gain during periods of good nutrition are genetically different traits. We used BW measurements from 2,336 adult Merino ewes managed over 5 yr in a Mediterranean climate in Katanning, Australia. Body weight loss is the difference between 2 BW measured 42 d apart during mating, a period of poor nutrition. Body weight gain is the difference between 2 BW measured 131 d apart during a period of good nutrition between prelambing and weaning. We estimated variance compnents of BW change using 3 methods: 1) as a trait calculated by subtracting the first BW from the second, 2) multivariate analysis of BW traits, and 3) random regression analysis of BW. The h(2) and genetic correlations (rg) estimated using the multivariate analysis of BW and the BW change trait were very similar whereas the random regression analysis estimated lower heritabilities and more extreme negative genetic correlations between BW loss and gain. The multivariate model fitted the data better than random regression based on Akaike and Bayesian information criterion so we considered the results of the multivariate model to be more reliable. The heritability of BW loss (h(2) = 0.05-0.16) was smaller than that of BW gain (h(2) = 0.14-0.37). Body weight loss and gain can be bred for independently at 2 and 4 yr of age (rg = 0.03 and -0.04) whereas at 3 yr of age ewes that genetically lost more BW gained more BW (rg = -0.41). Body weight loss is genetically not the same trait at different ages (rg range 0.13-0.39). Body weight gain at age 3 yr is genetically the same trait at age 4 yr (rg = 0.99) but is different between age 2 yr and the older ages (rg = 0.53 and 0.51). These results suggest that as the ewes reach their mature BW, BW gain at different ages becomes the same trait. This does not apply to BW loss. We conclude that BW change could be included in breeding programs to breed adult Merino ewes that are more tolerant to variation in feed supply.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.