Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 441316
Title Integrating three lake models into a Phytoplankton Prediction System for Lake Taihu (Taihu PPS) with Python
Author(s) Huang, J.C.; Gao, J.F.; Hormann, G.; Mooij, W.M.
Source Journal of Hydroinformatics 14 (2012)2. - ISSN 1464-7141 - p. 523 - 534.
DOI https://doi.org/10.2166/hydro.2011.020
Department(s) Aquatic Ecology and Water Quality Management
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) water-quality - framework - interface - ecosystem - issues - tools - china
Abstract In the past decade, much work has been done on integrating different lake models using general frameworks to overcome model incompatibilities. However, a framework may not be flexible enough to support applications in different fields. To overcome this problem, we used Python to integrate three lake models into a Phytoplankton Prediction System for Lake Taihu (Taihu PPS). The system predicts the short-term (1-4 days) distribution of phytoplankton biomass in this large eutrophic lake in China. The object-oriented scripting language Python is used as the so-called 'glue language' (a programming language used for connecting software components). The distinguishing features of Python include rich extension libraries for spatial and temporal modelling, modular software architecture, free licensing and a high performance resulting in short execution time. These features facilitate efficient integration of the three models into Taihu PPS. Advanced tools (e. g. tools for statistics, 3D visualization and model calibration) could be developed in the future with the aid of the continuously updated Python libraries. Taihu PPS simulated phytoplankton biomass well and has already been applied to support decision making.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.