Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 442283
Title O-glycosylation as a novel control mechanism of peptidoglycan hydrolase activity
Author(s) Rolain, T.; Bernard, E.; Beaussart, A.; Degand, H.; Courtin, P.; Egge-Jacobsen, W.; Bron, P.A.; Morsomme, P.; Kleerebezem, M.; Chapot-Chartier, M.P.; Dufrêne, Y.F.; Hols, P.
Source Journal of Biological Chemistry 288 (2013)31. - ISSN 0021-9258 - p. 22233 - 22247.
Department(s) Host Microbe Interactomics
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) lactobacillus-plantarum wcfs1 - diamino acid endopeptidase - lactococcus-lactis - teichoic-acids - staphylococcus-aureus - cell-separation - bacterial-peptidoglycan - n-acetylglucosaminidase - listeria-monocytogenes - protein glycosylation
Abstract Acm2, the major autolysin of Lactobacillus plantarum, is a tripartite protein. Its catalytic domain is surrounded by an O-glycosylated N-terminal region rich in Ala, Ser, and Thr (AST domain), which is of low complexity and unknown function, and a C-terminal region composed of five SH3b peptidoglycan (PG) binding domains. Here, we investigate the contribution of these two accessory domains and of O-glycosylation to Acm2 functionality. We demonstrate that Acm2 is an N-acetylglucosaminidase and identify the pattern of O-glycosylation (21 mono-N-acetylglucosamines) of its AST domain. The O-glycosylation process is species-specific as Acm2 purified from Lactococcus lactis is not glycosylated. We therefore explored the functional role of O-glycosylation by purifying different truncated versions of Acm2 that were either glycosylated or non-glycosylated. We show that SH3b domains are able to bind PG and are responsible for Acm2 targeting to the septum of dividing cells, whereas the AST domain and its O-glycosylation are not involved in this process. Notably, our data reveal that the lack of O-glycosylation of the AST domain significantly increases Acm2 enzymatic activity, whereas removal of SH3b PG binding domains dramatically reduces this activity. Based on this antagonistic role, we propose a model in which access of the Acm2 catalytic domain to its substrate may be hindered by the AST domain where O-glycosylation changes its conformation and/or mediates interdomain interactions. To the best of our knowledge, this is the first time that O-glycosylation is shown to control the activity of a bacterial enzyme.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.