Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 442670
Title Proteomic and mechanistic analysis of Auxin Response Factors in the Arabidopsis embryo
Author(s) Llavata Peris, C.I.
Source University. Promotor(en): Dolf Weijers. - S.l. : s.n. - ISBN 9789461736734 - 143
Department(s) Biochemistry
EPS-1
Publication type Dissertation, internally prepared
Publication year 2013
Keyword(s) arabidopsis - auxinen - plantengroeiregulatoren - reacties - eiwitexpressieanalyse - genexpressie - embryonale ontwikkeling - embryogenese - auxins - plant growth regulators - responses - proteomics - gene expression - embryonic development - embryogenesis
Categories Plant Development / Plant Physiology
Abstract

Auxin is a phytohormone that is crucial for many aspects of plant development. The processes in which this hormone has been implicated span from embryo development to flower transition, defense, tropic responses, and many other processes during plant life. A key question in auxin biology is how this molecule is able to elicit such diverse responses. Auxin regulates the transcriptional activation or repression of genes through the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. In my studies I focus in the ARF transcription factors as a likely source of variation in output specificity. We consider three levels at which ARFs differ. First, ARFs differ in their ability to interact with different Aux/IAA (antagonistic family of transcription factors), or to form homo- or heterodimers. Second, ARFs assemble into different protein complexes, transcription factors interact with other transcriptional regulators or other proteins to form transcription complexes. These, when different, may contribute to different functions of ARF complexes. Thirdly, ARFs bind to and regulate different target genes. My work offers a plausible explanation how specific auxin responses are generated and through which genes the developmental responses to auxin are generated.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.