Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 442854
Title Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters
Author(s) Kempen, S.E.H.J. van
Source University. Promotor(en): Erik van der Linden, co-promotor(en): Leonard Sagis; Henk Schols. - S.l. : s.n. - ISBN 9789461737328 - 238
Department(s) Physics and Physical Chemistry of Foods
Food Chemistry Group
VLAG
Publication type Dissertation, internally prepared
Publication year 2013
Keyword(s) vetzure esters - oppervlaktespanningsverlagende stoffen - estervorming - oppervlaktereologie - schuimen - fatty acid esters - surfactants - esterification - surface rheology - foaming
Categories Food Physics
Abstract

Aerated food products consist of air bubbles that are surrounded by a matrix that can be either liquid or solid. Due to the large number of air bubbles that are generally present in aerated products, these systems contain a large interfacial area. Therefore, the properties of the interfaces are considered to contribute significantly to the macroscopic properties of the system. The properties of these interfaces are largely determined by the type of surfactant that adsorbs. Two major types of surfactants that are used within the food industry are proteins and low molecular weight (LMW) surfactants. Proteins are macromolecules consisting of hydrophilic and hydrophobic patches that adsorb at the interface, where they lower the surface tension and can unfold to create a two-dimensional network that can provide a high modulus. In contrast, LMW surfactants are molecules with a well-defined hydrophilic and hydrophobic part. They can form more compact surface layers than proteins, leading to lower surface tensions. They generally do not provide the interface with a high modulus, instead they stabilize the interface through the Gibbs-Marangoni mechanism that relies on rapid diffusion of surfactants after deformations of the interface. A molecule that can lower the surface tension considerably, like a LMW surfactant, and at the same time provide a high modulus, like a protein, has the potential to be an excellent foam stabilizer. In this thesis we focus on a series of molecules that obey these criteria: oligofructose fatty acid esters. We address the influence of changes in chemical fine structure (fatty acid chain length and degree of saturation, degree of esterification and size of the hydrophilic group) on the functional properties.

These esters are synthesized by esterification of fatty acids to oligofructose, which is a mixture of oligomers with different degrees of polymerization. As we show in chapter 2, reasonable yields are obtained when using lipase as the catalyst in a mixture of DMSO and ButOH. The conversion into mono-esters increased with increasing fatty acid chain length and is consistent with the preference of the enzyme for more hydrophobic substrates. The crude reaction product consisted of a mixture of unreacted oligofructose and fatty acids, the main reaction products mono-esters and small amounts of di-esters. The crude product was fractionated using RP-SPE. MALDI-TOF MS and (2D) NMR were used to confirm the structure and purity of the esters; >90% for mono-esters and >80% for di-esters.

Similar to typical LMW surfactants, the oligofructose esters formed spherical micelles in the bulk after a certain critical concentration. As we show in chapter 3, the CAC depended on the hydrophobicity of the molecules. The efficiency also increased with increasing hydrophobicity and the effectiveness was similar. The area occupied by a single molecule at the interface was determined by fitting the CAC curves with the Gibbs adsorption model and measured directly using ellipsometry. The area occupied at the interface was larger for oligofructose mono-esters compared to sucrose esters. Furthermore, oligofructose di-esters occupied slightly more area than sucrose esters. All esters occupied significantly more area than a single fatty acid chain. This shows that the oligofructose group dominates the area occupied at the interface.

The rheological properties, as studied in chapter 4, were determined using a traditional approach, where the dependency of the surface dilatational modulus on surface pressure and frequency was determined, and using a novel approach, where we show how the surface dilatational modulus is dependent on deformation amplitude and temperature. Furthermore, we show how Lissajous plots of surface pressure versus deformation may be used to gain information about the correlation between surface rheological properties and interfacial microstructure. Sucrose esters behaved like typical LMW surfactants, with low surface dilatational moduli, scaling exponents in the frequency dependency close to 0.5, and fairly viscous Lissajous plots without significant asymmetries. In contrast, oligofructose mono-esters formed interfaces with high surface dilatational moduli, low scaling exponents in the frequency dependency and asymmetric Lissajous plot with strain hardening during compression and strain softening during expansion. We conclude that the oligofructose mono-esters form a two-dimensional soft glass. The oligofructose di-esters behaved like typical LMW surfactants at high surface pressures, showing that the presence of the second fatty acid chain prevent the formation of the glass by the oligofructose part.

In chapter 5 we focus on the difference in functionality between the crude reaction product, the individual components that are present in the crude product and mixes of these products. Unreacted fatty acids migrated to the interface only in very small amount, due to the low solubility in the bulk. The addition of mono-esters slightly improved the amount of fatty acid that could migrate to the interface. Oligofructose was not surface active and its addition to the mono-ester only diluted the mono-ester which did not lead to significant changes in functional properties because the concentration of mono-ester was still close to the CMC. When mono-esters and di-esters were mixed, the rheological results showed that the ratio between mono-ester and di-ester was very important for the rheological profile. In both cases the results suggest the presence of islands of glass phase formed by the mono-esters surrounded by a viscous phase formed by the di-esters. When the surface concentration of mono-esters was high, the glassy patches dominated the interface, leading to a high modulus, low frequency dependency and Lissajous plots with a high degree of asymmetry. When the surface concentration of mono-esters decreased, the lower connectivity between the glassy patches lead to a low modulus, intermediate frequency dependency, and Lissajous plots with moderate asymmetry.

To study the potential of oligofructose esters as food grade surfactants it is important to consider that many food products contain ingredients with the potential to be surface active. Therefore, in chapter 6 we have studied the functional properties of an oligofructose mono-ester in the presence of whey protein isolate, a commonly used food protein. Except for at the highest protein concentration, the surface was dominated by the oligofructose ester. The stabilization mechanisms of oligofructose ester and WPI were mutually exclusive, leading to interfaces with a low surface dilatational modulus. Since the foaming properties were not negatively affected, we conclude that the Gibbs-Marangoni mechanism occurred. Only at the highest protein concentration, the surface concentration of WPI was sufficiently high to interfere with this mechanism, leading to a significant decrease in foam stability. Oligofructose esters were also able to displace a fully developed WPI network.

In chapter 7 we discuss the foaming properties of the esters. We show that only esters of intermediate hydrophobicity are able to form foams with small bubbles and a uniform bubble size distribution that lead to high foam stability. The affinity of esters with shorter fatty acid chains, up to 8 carbon atoms, for the interface was quite low as a result of the relatively hydrophilic nature of the molecules. Therefore, they were not effective foam stabilizers. The most hydrophobic components (mono-ester with a chain length of 18 carbon atoms and di-ester with a chain length of 12 carbon atoms) were too slow to migrate to the interface. Therefore, also these components were poor foam stabilizers. We show that the surface tension at short time scales is the most accurate predictor of foam stability. However, despite similar initial surface tension values, oligofructose esters lead to higher foam stability. This could be attributed to the oligofructose part that forms a two-dimensional glass phase and provides mechanical stability to the foam films.

In the general discussion that is presented in chapter 8 we integrate the results from the different chapters. One of the factors that is persistent throughout the different chapters is the rheological profile of the interfaces. We have shown that by using amplitude sweeps and Lissajous plots, a lot more information on the interfacial microstructure can be extracted from rheological data than by using more conventional methods. In the last part of the general discussion improvements to the synthesis are discussed, as the optimization of the synthesis was not considered in this thesis. Furthermore, improvements for the functional experiments and additional applications were identified.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.