Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 442858
Title Jacobaea through the eyes of spectroscopy : identifying plant interactions with the (a)biotic environment by chemical variation effects on spectral reflectance patterns
Author(s) Almeida De Carvalho, S.
Source University. Promotor(en): Wim van der Putten; Andrew Skidmore, co-promotor(en): M. Macel; M. Schlerf. - S.l. : s.n. - ISBN 9789461737502 - 180
Department(s) Laboratory of Nematology
Resource Ecology
PE&RC
Publication type Dissertation, internally prepared
Publication year 2013
Keyword(s) senecio jacobaea - senecio erucifolius - pyrrolizidinealkaloïden - voedingsstoffen - spectraalanalyse - spectroscopie - bodemmicrobiologie - metabolieten - chemische analyse - plantensuccessie - pyrrolizidine alkaloids - nutrients - spectral analysis - spectroscopy - soil microbiology - metabolites - chemical analysis - plant succession
Categories Plant Physiology
Abstract

Plants interact with a wide array of aboveground and belowground herbivores, pathogens, mutualists, and their natural enemies. These interactions are important drivers of spatio-temporal changes in vegetation, however, they may be difficult to be revealed without extensive sampling.In this thesis I investigated the potential of visible and near-infrared spectral measurements to detect plant chemical changes that may reflect interactions between plants and biotic or abiotic soil factors. First, I examined the relative contribution of pyrrolizidine alkaloids (PAs; these are defence compounds of Senecio-type plants against generalist herbivores) to the spectral reflectance features in the visible and short-wave infrared region. My hypothesis was that PAs can be predicted from specific spectral features of aboveground plant tissues. Since PA profiles and their relation to spectral features could be species specific I compared three different species, Jacobaea vulgaris, J. erucifolia and S. inaequidens subjected to nutrient and water treatments to stimulate plant chemical variation. Pyrrolizidine alkaloids were predicted best by spectral reflectance features in the case of Jacobaea vulgaris. I related the better results obtained with J. vulgaris to the existence of the correlation between PAs and nitrogen and the presence of the epoxide chemical structure in J. vulgaris.

I also examined if different soil microbial communities influenced plant shoot spectral reflectance. I grew the same three plant species as before in sterilized soil and living soil collected from fields with J. vulgaris. I expected that soil biota would change shoot defence content and hyperspectral reflectance in plant species-specific ways. Indeed, the exposure to different soils caused plant chemical profiles to change and both chemical and spectral patterns discriminated plants according to the soil biotic conditions.

I studied how primary and secondary plant metabolites varied during the growing season and vegetation successional stages. I used a well-studied chronosequence of abandoned arable fields and analysed the chemistry of both leaves and flowers of Jacobaea vulgaris throughout the seasons in fields of different successional status. My general hypothesis was that seasonal allocation of nutrients and defence metabolites to reproductive organs fitted the optimal defence theory, but that pattern was dependent on the successional stage of the vegetation. I found an interaction between season and succession stage, as plants from longer abandoned fields generally had flowers and leaves with higher N-oxides, especially in late Summer. Independent of the succession stage there was a seasonal allocation of nutrients and defence metabolites to flowers. Analyses of spectral reflectance of the field plants showed thatdefence compounds could be estimated more reliably in flowers, while in leaves primary compounds could be predicted best. Succession classes were successfully discriminated by the spectral patterns of flowers. Both chemical and spectral findings suggested that flowers are more sensitive to field ageing processes than leaves.

Conclusions

The estimation of pyrrolizidine alkaloids by spectral reflectance features was better in Jacobaea vulgaris than in Senecio inaequidens or Jacobaea erucifolia (chapter 2). Differences in soil communities affect plant leaves’ chemistry and spectral reflectance patterns (chapter 3). Jacobaea vulgarisplants from recent and longer-abandoned fields showed the largest differences in chemical concentration, composition of defence compounds, and spectral reflectance patterns. Flowers were more discriminatory than leaves (chapters 4 and 5). There is a potential to detect plant-biotic interactions by analyzing spectral reflectance patterns (this thesis).
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.