Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 442920
Title Characterizing regional soil mineral composition using spectroscopy and geostatistics
Author(s) Mulder, V.L.; Bruin, S. de; Weyermann, J.; Kokaly, R.F.; Schaepman, M.E.
Source Remote Sensing of Environment 139 (2013). - ISSN 0034-4257 - p. 415 - 429.
DOI http://dx.doi.org/10.1016/j.rse.2013.08.018
Department(s) Laboratory of Geo-information Science and Remote Sensing
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) spatial prediction - usgs tetracorder - regression - vegetation - carbon - model - area - attributes - variograms - variables
Abstract This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD) was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We tested whether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was done with Fixed Rank Kriging (FRK) to represent the medium and long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial variability of soil and environmental properties at regional scale.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.