Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 443022
Title Salmonella biofilms
Author(s) Castelijn, G.A.A.
Source University. Promotor(en): Tjakko Abee; Marcel Zwietering, co-promotor(en): Roy Moezelaar. - S.l. : s.n. - ISBN 9789461737335 - 168
Department(s) Food Microbiology Laboratory
FBR Food Technology
VLAG
Publication type Dissertation, internally prepared
Publication year 2013
Keyword(s) salmonella typhimurium - salmonella - biofilms - franjes - fimbriae
Categories Food Microbiology
Abstract

Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collection of SalmonellaTyphimurium clinical, outbreak-related and retail product isolates, was used to determine biofilm formation capacity and to identify cellular parameters contributing to surface colonisation. The results revealed dense biofilm formation by these isolates at 25 °C and 37 °C in nutrient-rich media. However, in nutrient-low media dense biofilm formation was only observed at 25 °C with industrial isolates. In addition, temperature and medium composition were also found to influence biofilm morphology and composition. At nutrient-low conditions at 25 °C the biofilm consisted of cell clusters encapsulated by an extracellular matrix composed of curli fimbriae and cellulose. In nutrient-rich conditions a monolayer of cells with little to no extracellular matrix were observed, with a prominent role for type 1 fimbriae. This type of fimbriae was only expressed in a subset of strains and appeared to contribute to initial attachment of Salmonellacells ultimately leading to dense biofilm formation. This study also indicated that biofilm formation differs between and within the Salmonellaserovars Typhimurium, Derby, Brandenburg and Infantis, isolated from meat processing environments. And, for all serovars biofim formation contributed to the survival on stainless steel surfaces and biofilm cells were less susceptible to peracetic acid disinfection treatments. This latter effect was specifically observed in the presence of organic matter, which drastically decreased the activity of peracetic acid conceivably resulting in low level exposure of the bacterial flora facilitating survival. Furthermore, single and repeated exposure to sub-lethal concentrations of the disinfectant benzalkonium chloride rapidly selected for resistant variants. In conclusion, the results obtained in this study may contribute to the development of better strategies for Salmonella control in food processing environments.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.