Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 443183
Title Interpreting experimental data on egg production - applications of dynamic differential equations
Author(s) France, J.; Lopez, S.; Kebreab, E.; Dijkstra, J.
Source Poultry Science 92 (2013)9. - ISSN 0032-5791 - p. 2498 - 2508.
DOI https://doi.org/10.3382/ps.2012-02622
Department(s) Animal Nutrition
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) drosophila-melanogaster - gastrointestinal-tract - quantitative genetics - mathematical-models - phosphorus - calcium - absorption - fertility - algorithm
Abstract This contribution focuses on applying mathematical models based on systems of ordinary first-order differential equations to synthesize and interpret data from egg production experiments. Models based on linear systems of differential equations are contrasted with those based on nonlinear systems. Regression equations arising from analytical solutions to linear compartmental schemes are considered as candidate functions for describing egg production curves, together with aspects of parameter estimation. Extant candidate functions are reviewed, a role for growth functions such as the Gompertz equation suggested, and a function based on a simple new model outlined. Structurally, the new model comprises a single pool with an inflow and an outflow. Compartmental simulation models based on nonlinear systems of differential equations, and thus requiring numerical solution, are next discussed, and aspects of parameter estimation considered. This type of model is illustrated in relation to development and evaluation of a dynamic model of calcium and phosphorus flows in layers. The model consists of 8 state variables representing calcium and phosphorus pools in the crop, stomachs, plasma, and bone. The flow equations are described by Michaelis-Menten or mass action forms. Experiments that measure Ca and P uptake in layers fed different calcium concentrations during shell-forming days are used to evaluate the model. In addition to providing a useful management tool, such a simulation model also provides a means to evaluate feeding strategies aimed at reducing excretion of potential pollutants in poultry manure to the environment.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.