Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 443186
Title A modified rinsing method for the determination of the S, W-S and D + U fraction of protein and starch in feedstuff within the in situ technique
Author(s) Jonge, L.H. de; Laar, H. van; Hendriks, W.H.; Dijkstra, J.
Source Animal 7 (2013)8. - ISSN 1751-7311 - p. 1289 - 1297.
DOI https://doi.org/10.1017/S1751731113000360
Department(s) Animal Nutrition
Livestock Research
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) rumen - degradability - degradation - electrophoresis - ruminants - profiles - extent - sacco
Abstract A modified rinsing method for the in situ technique was developed to separate, isolate and characterise the soluble (S), the insoluble washout (W–S) and the non-washout fractions (D1U) within one procedure. For non-incubated bags ( t50 h), this method was compared with the conventional, Combined Fractionation (CF) method that measures the D1U and S fractions in separate steps and subsequently calculates the W–S fraction. The modified method was based on rinsing of nylon bags in a closed vessel containing a buffer solution (pH 6.2) during 1 h, where shaking speeds of 40, 100, and 160 strokes per minutes (spm) were evaluated, and tested for six feed ingredients (faba beans, maize, oats, peas, soya beans and wheat) and four forages (two ryegrass silages and two maize silages). The average recoveries as the sum of all fractions were 0.97260.041 for N and 0.99060.050 for starch (mean6s.d.). The mean W–S fraction increased with increasing shaking speed and varied between 0.017 (N) and 0.083 (starch) at 40 spm and 0.078 (N) and 0.303 (starch) at 160 spm, respectively. For ryegrass silages, the W–S fraction was absent at all shaking speeds, but was present in the CF method. The modified method, in particular at 40 and 100 spm, reduced the loss of small particles during rinsing, resulting in lower W–S and higher D1U fractions for N and starch compared with the CF method. For soya beans and ryegrass silage, the modified method reduced the S fraction of N compared with the CF method. The results obtained at 160 spm showed the best comparison with those from the CF method. The W–S fraction of the feedstuff obtained at 160 spm contained mainly particles smaller than 40 mm (0.90860.086). In most feedstuff, starch was the most abundant chemical component in the W–S fraction and its content (726675 g/kg DM) was higher than in the D1U fraction (4056177 g/kg DM). Alkaline-soluble proteins were the dominant N-containing components in the W–S fraction of dry feed ingredients and its relative content (0.7960.18 of total N in W–S) was higher than in the D1U fraction (0.5960.07 of total N in D1U) for all feedstuff except maize. The molecular weight distribution of the alkaline-soluble proteins differed between the W–S and the D1U fractions of all dry feed ingredients, except soya beans and wheat.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.