Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 443593
Title Interactions between enteric methane and nitrogen excretion in dairy cows
Author(s) Bannink, A.; Ellis, J.L.; Mach, N.; Spek, J.W.; Dijkstra, J.
Source Advances in Animal Biosciences 4 (2013)s1. - ISSN 2040-4700 - p. 19 - 27.
DOI https://doi.org/10.1017/S2040470013000277
Department(s) LR - Animal Nutrition
Animal Nutrition
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2013
Abstract Next to dry matter (DM) intake, nutritional factors cause considerable variation in methane (CH4) emitted and nitrogen (N) excreted per kg of DM intake or per kg of milk. Rumen function in particular determines CH4 emission and concomitant (amount and site) of N excretion, including the trade-offs between them with changes in nutrition and cow characteristics. Quantification of the interaction between CH4 and N emission hence requires quantification of effects on rumen function in particular. The models available to quantify CH4 emission require the same types of input. The detail of questions posed determines the choice of model and the required level of detail of model inputs needed to investigate mitigation measures and the interaction between CH4 and N emission for a specific farming case. Simulation results with a mechanistic model of enteric fermentation confirmed a profound impact of nutritional measures on both CH4 and N emission, but also demonstrated that nutritional measures to mitigate N excretion can be associated with an increase in CH4 emission. This result demonstrates the need to consider details on the rumen level when the aim is to quantify accurately the net effect on greenhouse gas emission for a specific case studied, which contrasts with applying generic values. As an alternative to models of quantification, on-farm measurement of emission might be pursued by sampling of excreta and air. The principle problem is that concentrations are measured which not necessarily reflect daily rates. Milk production rate is recorded on-farm however, which makes indicators based on milk composition just as promising candidates to estimate CH4 (milk fat) or N (milk urea) emission, provided bias by variation in milk composition unrelated to CH4 and N emission rate can be prevented.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.