Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 444763
Title Passage of stable isotope-labeled grass silage fiber and fiber-bound protein through the gastroinstestinal tract of dairy cows
Author(s) Warner, D.; Dijkstra, J.; Hendriks, W.H.; Pellikaan, W.F.
Source Journal of Dairy Science 96 (2013)12. - ISSN 0022-0302 - p. 7904 - 7917.
DOI http://dx.doi.org/10.3168/jds.2013-7168
Department(s) Animal Nutrition
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) neutral detergent fiber - fresh perennial ryegrass - small-particle kinetics - in-sacco degradation - organic-matter - rumen fermentation - chemical-composition - nitrogen-fertilizer - digestion processes - physical structure
Abstract Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (d) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of intrinsically labeled grass silage from fecal and omasal excretion patterns of d13C and d15N. In a 6 × 6 Latin square, lactating dairy cows received grass silages [455 g/kg of total diet dry matter (DM) ] in a 2 × 3 factorial arrangement from ryegrass swards fertilized at low (45 kg of N/ha) or high (90 kg of N/ha) levels of N and harvested at 3 maturity stages. Feed intake (16.7 ± 0.48 kg of DM/d; mean ± standard error of the mean) and milk yield (26.7 ± 0.92 kg/d) increased at the high level of N fertilization and at decreasing maturity. Nutrient digestibility decreased with increasing plant maturity, particularly at the high level of N fertilization, essentially reflecting dietary treatment effects on the nutritional composition of the grass silage. Fractional rumen passage rates (K1) were highest and total mean retention time in the gastrointestinal tract (TMRT) was lowest when based on the external marker chromium mordanted fiber (Cr-NDF; 0.047/h and 38.0 h, respectively). Fecal d13C in the acid detergent fiber fraction (13CADF) provided the lowest K1 (0.023/h) and the highest TMRT (61.1 h) and highest peak concentration time (PCT; 24.3 h) among markers. In comparison, fecal fiber-bound N (15NADF) had a considerably higher K1 (0.032/h) and lower TMRT (46.4 h) than 13CADF. Total N (measured with 15NDM) had a comparable K1 (0.034/h) to that of 15NADF but provided the highest fractional passage rates from the proximal colon-cecum (K2; 0.37/h) and lowest PCT (17.4 h) among markers. A literature review indicated unclear effects of grass silage maturity on K1 and unknown effects of N fertilization on K1. Our study indicated no effect of advancing maturity on fecal K1 and a trend for K1 to increase with the high level of N fertilization. Parameter K2 increased, whereas PCT and TMRT generally decreased with the high level of N fertilization. Omasal digesta sampling largely confirmed results based on fecal sampling. Results indicate that the use of d13C and d15N can describe fiber-specific passage kinetics of forage.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.