Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 444846
Title The Maillard reaction and pet food processing: effects on nutritive value and pet health
Author(s) Rooijen, C. van; Bosch, G.; Poel, A.F.B. van der; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.
Source Nutrition Research Reviews 26 (2013)2. - ISSN 0954-4224 - p. 130 - 148.
DOI https://doi.org/10.1017/S0954422413000103
Department(s) Animal Nutrition
Food Chemistry Group
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) glycation end-products - distillers dried grains - age-related-changes - slope-ratio assay - available lysine - amino-acid - diabetes-mellitus - extrusion-cooking - model systems - growing-pigs
Abstract The Maillard reaction, which can occur during heat processing of pet foods or ingredients, is known to reduce the bioavailability of essential amino acids such as lysine due to the formation of early and advanced Maillard reaction products (MRP) that are unavailable for utilisation by the body. Determination of the difference between total and reactive lysine by chemical methods provides an indication of the amount of early MRP present in foods, feeds and ingredients. Previous research reported that the difference between total and reactive lysine in pet foods can be up to 61·8 %, and foods for growing dogs may be at risk of supplying less lysine than the animal may require. The endogenous analogues of advanced MRP, advanced glycation endproducts, have been associated with age-related diseases in humans, such as diabetes and impaired renal function. It is unknown to what extent advanced MRP are present in pet foods, and if dietary MRP can be associated with the development of diseases such as diabetes and impaired renal function in pet animals. Avoidance of ingredients with high levels of MRP and processing conditions known to favour the Maillard reaction may be useful strategies to prevent the formation of MRP in manufactured pet food. Future work should further focus on understanding the effects of ingredient choice and processing conditions on the formation of early and advanced MRP, and possible effects on animal health.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.