Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 447548
Title Synergistic and species-specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation
Author(s) Ekvall, M.K.; Faassen, E.J.; Gustafsson, J.A.; Lurling, M.; Hansson, L.
Source Freshwater Biology 58 (2013)11. - ISSN 0046-5070 - p. 2414 - 2422.
DOI https://doi.org/10.1111/fwb.12220
Department(s) Aquatic Ecology and Water Quality Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) dissolved organic-carbon - harmful cyanobacteria - subg. dolichospermum - drinking-water - genus anabaena - lakes - daphnia - toxins - biomanipulation - microcystins
Abstract Cyanobacterial blooms are a worldwide phenomenon in both marine and freshwater ecosystems and are predicted to occur more frequently due to global climate change. However, our future water resources may also simultaneously suffer from other environmental threats such as elevated amounts of humic content and consequent increased water colour, a phenomenon called 'brownification'. In order to investigate the effects of temperature and water colour in combination, we performed a mesocosm experiment combining a 3 °C increase in temperature and a doubling in water colour. With this, we created a projected future scenario for our water resources, and we specifically focused on how these changes would affect cyanobacterial bloom formation and toxicity. We showed that despite total cyanobacterial biomass remaining unaffected, the abundance of one individual cyanobacterial species, Microcystis botrys, increased in response to the combination of elevated temperature and increased water colour. Furthermore, population fluctuations in M. botrys explained the majority of the variations in microcystin concentrations, suggesting that this species was responsible for the more than 300% higher microcystin concentrations in the future scenario treatment compared to the ambient scenario. Hence, it was not a change in cyanobacterial biomass, but rather a species-specific response that had the most profound impact on bloom toxicity. We argue that understanding such species-specific responses to multiple stressors is crucial for proper management decisions because toxic blooms can significantly affect both biodiversity and ecosystem functioning, as well as ecosystem services such as drinking water supply and recreation. © 2013 John Wiley & Sons Ltd.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.