Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 447749
Title Whole Genome and Tandem Duplicate Retention facilitated Glucosinolate Pathway Diversification in the Mustard Family.
Author(s) Hofberger, J.A.; Lyons, E.; Edger, P.P.; Pires, J.C.; Schranz, M.E.
Source Genome Biology and Evolution 5 (2013). - ISSN 1759-6653 - p. 2155 - 2173.
DOI http://dx.doi.org/10.1093/gbe/evt162
Department(s) Biosystematics
EPS
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) quantitative trait locus - arabidopsis-thaliana - gene duplication - secondary metabolism - insect resistance - natural variation - provides insight - biosynthesis - evolution - plants
Abstract Plants share a common history of successive whole genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and Tandem Duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the Mustard Family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all Mustard Family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95 and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared to the 22% average for all protein-coding genes in Arabidopsis, 52 and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. While 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of tandem- and whole genome duplication events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.