Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 449582
Title Biophysical controls on evapotranspiration and water use efficiency in natural, semi-natural and managed African ecosystems
Author(s) Brümmer, C.; Merbold, L.; Archibald, S.; Ardö, J.; Arneth, A.; Veenendaal, E.M.
Event EGU General Assembly 2013, Vienna, 2013-04-07/2013-04-12
Department(s) Nature Conservation and Plant Ecology
PE&RC
Publication type Contribution in proceedings
Publication year 2013
Abstract The effects of climatic factors and vegetation type on evapotranspiration (E) and water use efficiency (WUE) were analyzed using tower-based eddy-covariance (EC) data of eleven African sites (22 site years) located across a continental-scale transect. The seasonal pattern of E was closely linked to growing-season length and rainfall distribution. Although annual precipitation (P) was highly variable among sites (290 to 1650 mm), minimum annual E was not less than 250 mm and reached a maximum of 900 mm where annual P exceeded 1200 mm. Site-specific interannual variability in E could be explained by either changes in total P or variations in solar irradiance. At some sites, a highly positive linear correlation was found between monthly sums of E and net radiation (Rn), whereas a hysteretic relationship at other sites indicated that E lagged behind the typical seasonal progression of Rn. Results of a cross-correlation analysis between daily (24-h) E and Rn revealed that site-specific lag times were between 0 days and up to a few weeks depending on the lag of vapor pressure deficit (D) behind Rn and vegetation type. Physiological parameters (e.g. mean dry-foliage Priestley-Taylor alpha) implied that stomatal limitation to transpiration prevailed. During the rainy season, a strong linear correlation between monthly mean values of gross primary production (GPP) and E resulted in water use efficiency being constant with lower values at grass-dominated sites (~2 to ~3.5 g C kg-1 H2O) than at natural woodland sites and plantations (~4.5 to ~6 g C kg-1 H2O).
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.