Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 450903
Title Upscaling drought information from the catchment scale to the global scale: how seasonality in climate influences drought characteristics
Author(s) Loon, A. van; Tijdeman, E.; Wanders, N.; Lanen, H.A.J. van; Teuling, A.; Uijlenhoet, R.
Event EGU General Assembly 2013, Vienna, 2013-04-07/2013-04-12
Department(s) Hydrology and Quantitative Water Management
Publication type Abstract in scientific journal or proceedings
Publication year 2013
Abstract The upscaling of the understanding of hydrological processes from the catchment scale to the global scale is not straightforward, especially not for hydrological extremes as floods and droughts. For large-scale water resources management, information on the development and persistence of soil moisture and hydrological droughts is crucial. The characteristics of these droughts (i.e. duration and severity) vary around the world and are dependent on climate and catchment properties. In this study, we investigated climate controls on drought propagation (i.e. the translation of meteorological conditions to a soil moisture drought and/or hydrological drought) by isolating forcing effects from effects of catchment properties. We used a conceptual hydrological model, forced by the WATCH forcing data, that was run for 1271 grid cells distributed over the global climate zones. The precipitation that was used as input, and soil moisture storage and subsurface discharge that were outcomes of the model, were then analysed with a well-known drought identification method (variable threshold level method). Drought characteristics duration and standardised deficit (deficit below the smoothed monthly-varying threshold, divided by the mean of the variable for that grid cell) were determined for each drought event. These drought characteristics were clustered per subclimate type and combined into bivariate probability density fields. The shape and orientation of these density fields provide information on the propagation of drought in different climate zones. Drought propagation features that are apparent on the catchment scale, such as pooling (meteorological droughts are merged into a prolonged hydrological drought) and attenuation (the damping effect of stores on the drought signal), were reproduced in all climate zones. But also seasonal drought types that can have severe impacts on the catchment scale (e.g. rain-to-snow-season drought) leave a pronounced signal in the density fields on the global scale. We found that strongly non-linear patterns in the density fields of the drought characteristics occur in climates with a pronounced seasonal cycle in precipitation and/or temperature. Hot spots for these seasonality effects on drought propagation were found in monsoonal, savannah, and Mediterranean climate zones. In these regions, both soil moisture and hydrological drought show deviating patterns in drought characteristics, relative to non-seasonal climates (e.g. temperate subclimates). Surprisingly, the effect of seasonality on drought propagation is even stronger in cold seasonal climates (i.e. at high latitudes and altitudes), where snow accumulation during winter prevents recovery from summer hydrological drought and deficit increases strongly with duration. This has important implications for water resources management in seasonal climates, which cannot solely rely on meteorology-based indices as proxies for hydrological drought characteristics.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.