Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 455956
Title Management swing potential for bioenergy crops
Author(s) Davis, S.C.; Boddey, R.M.; Alves, B.J.R.; Cowie, A.L.; George, B.H.; Ogle, S.M.; Smith, P.; Noordwijk, M. van; Wijk, M.T. van
Source Global change biology Bioenergy 5 (2013)6. - ISSN 1757-1693 - p. 623 - 638.
DOI http://dx.doi.org/10.1111/gcbb.12042
Department(s) Plant Production Systems
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) greenhouse-gas emissions - land-use change - life-cycle assessment - soil organic-carbon - miscanthus x giganteus - oil production systems - palm oil - mallee biomass - western-australia - mitigation options
Abstract Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production system. Here, we review the greenhouse gas balance and management swing potential' of seven different bioenergy cropping systems in temperate and tropical regions. Prior land use, harvesting techniques, harvest timing, and fertilization are among the key management considerations that can swing the greenhouse gas balance of bioenergy from positive to negative or the reverse. Although the management swing potential is substantial for many cropping systems, there are some species (e.g., soybean) that have such low bioenergy yield potentials that the environmental impact is unlikely to be reversed by management. High-yielding bioenergy crops (e.g., corn, sugarcane, Miscanthus, and fast-growing tree species), however, can be managed for environmental benefits or losses, suggesting that the bioenergy sector would be better informed by incorporating management-based evaluations into classifications of bioenergy feedstocks.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.