Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 479603
Title Phasor approaches simplify the analysis of tryptophan fluorescence data in protein denaturation studies
Author(s) Bader, A.N.; Visser, N.V.; Amerongen, H. van; Visser, A.J.W.G.
Source Methods and Applications in Fluorescence 2 (2014)4. - ISSN 2050-6120 - 8 p.
DOI https://doi.org/10.1088/2050-6120/2/4/045001
Department(s) Biophysics
Biochemistry
Publication type Refereed Article in a scientific journal
Publication year 2014
Abstract The intrinsic fluorescence of tryptophan is frequently used to investigate the structure of proteins. The analysis of tryptophan fluorescence data is challenging: fluorescence (anisotropy) decays typically have multiple lifetime (correlation time) components and fluorescence spectra are broad and exhibit only minor shifts. In this work, we show that phasor approaches can substantially simplify tryptophan fluorescence analysis. To demonstrate this, we re-analyse previously recorded datasets of the denaturant (guanidinium hydrochloride, GuHCl) induced unfolding of a single-tryptophan-containing variant of apoflavodoxin from Azotobacter vinelandii. For three methods-(1) time-resolved fluorescence, (2) time-resolved fluorescence anisotropy and (3) steady-state fluorescence spectroscopy-we show that the phasor analysis can readily identify the presence of a folding intermediate. Moreover, the fractional contributions of protein states at various stages of unfolding and the values of the free energy difference of the unfolding process (¬GUN) 0 are obtained. The outcomes are compared to the global analysis results published previously.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.