Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 491667
Title Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.)
Author(s) Wang, K.; Song, N.; Zhao, Q.; Zee, S.E.A.T.M. van der
Source Environmental Science and Pollution Research 23 (2016)2. - ISSN 0944-1344 - p. 1441 - 1448.
DOI https://doi.org/10.1007/s11356-015-5348-z
Department(s) Soil Physics and Land Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract Peanut (Arachis hypogaea L.) genotypes may differ greatly with regard to cadmium (Cd) accumulation, but the underlying mechanisms remain unclear. To determine the key factors that may contribute to Cd re-distribution and accumulation in peanut genotypes with different Cd accumulating patterns, a split-pot soil experiment was conducted with three common Chinese peanut cultivars (Fenghua-6, Huayu-20, and Huayu-23). The growth medium was separated into pod and root zones with varied Cd concentrations in each zone to determine the re-distribution of Cd after it is taken up via different routes. The peanut cultivars were divided into two groups based on Cd translocation efficiency as follows: (1) high internal Cd translocation efficiency cultivar (Fenghua-6) and (2) low internal Cd translocation efficiency cultivars (Huayu-20 and Huayu-23). Compared with Fenghua-6, low Cd translocation cultivars Huayu-20 and Huayu-23 showed higher biomass production, especially in stems and leaves, leading to dilution of metal concentrations. Results also showed that Cd concentration in roots increased significantly with increasing Cd concentrations in soils when Cd was applied in the root zone. However, there were no significant differences in the root Cd concentrations between different pod zone Cd treatments and the control, suggesting that root uptake, rather than pod uptake, is responsible for Cd accumulation in the roots of peanuts. Significant differences of Cd distribution were observed between pod and root zone Cd exposure treatments. The three peanut cultivars revealed higher kernel over total Cd fractions for pod than for root zone Cd exposure if only extra applied Cd was considered. This suggests that uptake through peg and pod shell might, at least partially, be responsible for the variation in Cd re-distribution and accumulation among peanut cultivars. Cd uptake by plants via two routes (i.e., via roots and via pegs and pods, respectively) and internal Cd translocation appear to be important mechanisms in determining Cd accumulation in the kernels of peanuts.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.