Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 494756
Title Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions
Author(s) Jourdin, Ludovic; Freguia, Stefano; Flexer, Victoria; Keller, Jurg
Source Environmental Science and Technology 50 (2016)4. - ISSN 0013-936X - p. 1982 - 1989.
DOI http://dx.doi.org/10.1021/acs.est.5b04431
Department(s) Sub-department of Environmental Technology
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract

The enhancement of microbial electrosynthesis (MES) of acetate from CO2 to performance levels that could potentially support practical implementations of the technology must go through the optimization of key design and operating conditions. We report that higher proton availability drastically increases the acetate production rate, with pH 5.2 found to be optimal, which will likely suppress methanogenic activity without inhibitor addition. Applied cathode potential as low as -1.1 V versus SHE still achieved 99% of electron recovery in the form of acetate at a current density of around -200 A m-2. These current densities are leading to an exceptional acetate production rate of up to 1330 g m-2 day-1 at pH 6.7. Using highly open macroporous reticulated vitreous carbon electrodes with macropore sizes of about 0.6 mm in diameter was found to be optimal for achieving a good balance between total surface area available for biofilm formation and effective mass transfer between the bulk liquid and the electrode and biofilm surface. Furthermore, we also successfully demonstrated the use of a synthetic biogas mixture as carbon dioxide source, yielding similarly high MES performance as pure CO2. This would allow this process to be used effectively for both biogas quality improvement and conversion of the available CO2 to acetate.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.