Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 495137
Title Assessment of changes in potential nutrient limitation in an impounded river after application of lanthanum-modified bentonite
Author(s) Douglas, Grant B.; Lurling, Miguel; Spears, Bryan M.
Source Water Research 97 (2016). - ISSN 0043-1354 - p. 47 - 54.
Department(s) Aquatic Ecology and Water Quality Management
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Lanthanum-modified bentonite - Nutrient limitation

With the advent of phosphorus (P)-adsorbent materials and techniques to address eutrophication in aquatic systems, there is a need to develop interpretive techniques to rapidly assess changes in potential nutrient limitation. In a trial application of the P-adsorbent, lanthanum-modified bentonite (LMB) to an impounded section of the Canning River, Western Australia, a combination of potential P, nitrogen (N) and silicon (Si) nutrient limitation diagrams based on dissolved molar nutrient ratios and actual dissolved nutrient concentrations have been used to interpret trial outcomes. Application of LMB resulted in rapid and effective removal of filterable reactive P (FRP) from the water column and also effectively intercepted FRP released from bottom sediments until the advent of a major unseasonal flood event. A shift from potential N-limitation to potential P-limitation also occurred in surface waters. In the absence of other factors, the reduction in FRP was likely to be sufficient to induce actual nutrient limitation of phytoplankton growth. The outcomes of this experiment underpins the concept that, where possible in the short-term, in managing eutrophication the focus should not be on the limiting nutrient under eutrophic conditions (here N), but the one that can be made limiting most rapidly and cost-effectively (P).

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.