Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 495248
Title Error Sources in Deforestation Detection Using BFAST Monitor on Landsat Time Series Across Three Tropical Sites
Author(s) Schultz, Michael; Verbesselt, Jan; Avitabile, Valerio; Souza, Carlos; Herold, Martin
Source IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9 (2016)8. - ISSN 1939-1404 - p. 3667 - 3679.
Department(s) Laboratory of Geo-information Science and Remote Sensing
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract Accurate tropic deforestation monitoring using time series requires methods which can capture gradual to abrupt changes and can account for site-specific properties of the environment and the available data. The generic time series algorithm BFAST Monitor was tested using Landsat time series at three tropical sites. We evaluated the importance of how specific effects of site and radiometric correction affected the accuracy of deforestation monitoring when using BFAST Monitor. Twelve sets of time series of normalized difference vegetation index (NDVI) Landsat data (2000–2013) were analyzed. Time series properties varied according to site (Brazil, Ethiopia, and Vietnam) and which correction scheme was applied: Atmospheric Correction and Haze Reduction 2 and 3 (ATCOR 2 and 3), Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS), or Dark Object Subtraction (DOS). Mapping accuracy was compared using 1200 reference points per site and consistent designs for sampling, analysis (overall accuracy, user’s accuracy, and producer’s accuracy), and response (ground truth and very-high-resolution data). With the exception of DOS, mapping accuracies across correction methods were found to be similar but varied greatly with site. Mapping errors were modeled using a set of error parameters that yielded information on data and site-specific environmental properties. Important parameters for characterizing mapping errors were found to be variance of the NDVI and soil signal as well as availability of time series data, and forest edge effects. Based upon the results, local fine-tuning of the algorithm is essential for some areas but for others default settings create satisfactory accuracies.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.