Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 495542
Title What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis?
Author(s) Geurts, Rene; Xiao, Ting Ting; Reinhold-Hurek, Barbara
Source Trends in Plant Science 21 (2016)3. - ISSN 1360-1385 - p. 199 - 208.
DOI https://doi.org/10.1016/j.tplants.2016.01.012
Department(s) Laboratory of Molecular Biology
EPS
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Common symbiosis signalling pathway - Evolution - Lipochitooligosaccharides - Nitrogen-fixing endosymbiosis
Abstract

Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the evolutionary trajectory towards endosymbiosis is not complex. Here, we argue that microbe-induced cell divisions are a prerequisite for the entrance of diazotrophic prokaryotes into living plant cells. For rhizobia and Frankia bacteria, this is achieved by adapting the readout of the common symbiosis signalling pathway, such that cell divisions are induced. The common symbiosis signalling pathway is conserved in the plant kingdom and is required to establish an endosymbiosis with mycorrhizal fungi. We also discuss the adaptations that may have occurred that allowed nitrogen-fixing root nodule endosymbiosis. Studies in legumes, Parasponia, and actinorhizal plants provided insights into the genetic constraints that guided the evolution of nitrogen-fixing root nodules with rhizobium or Frankia bacteria.Oscillation of the nuclear calcium concentration is a hallmark of symbiotic signaling in legumes and nonlegumes.Calcium oscillations can be triggered not only by lipochitooligosaccharides (LCOs), but, in several root nodule-forming plant species, also by nonLCO signal molecules.Ectopic expression of either wild-type or dominant active alleles of seven genes of the common symbiosis signalling pathway trigger spontaneous nodule formation in legumes.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.