Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 495600
Title Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux
Author(s) Bense, V.F.; Read, T.; Verhoef, A.
Source Agricultural and Forest Meteorology 220 (2016). - ISSN 0168-1923 - p. 207 - 215.
Department(s) Hydrology and Quantitative Water Management
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Energy balance closure - Fibre-optic distributed temperature sensing - Temperature - Thermal patterns - Vegetation structure - Wet meadows

We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0 and 0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40 m × 40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1 ± 0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08 °C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate- and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterizing area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.