Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 496003
Title Arctic energy budget in relation to sea ice variability on monthly-to-annual time scales
Author(s) Krikken, F.; Hazeleger, W.
Source Journal of Climate 28 (2015). - ISSN 0894-8755 - p. 6335 - 6350.
Department(s) Meteorology and Air Quality
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract The large decrease in Arctic sea ice in recent years has triggered a strong interest in Arctic sea ice predictions on seasonal-to-decadal time scales. Hence, it is important to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. This study analyzes the natural variability of Arctic sea ice from an energy budget perspective, using 15 climate models from phase 5 of CMIP (CMIP5), and compares these results to reanalysis data. The authors quantify the persistence of sea ice anomalies and the cross correlation with the surface and top-of-atmosphere energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal ice–albedo feedback, through which sea ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of the ocean lies mainly in storing heat content anomalies in spring and releasing them in autumn. Ocean heat flux variations play only a minor role. Confirming a previous (observational) study, the authors demonstrate that there is no direct atmospheric response of clouds to spring sea ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud–ice feedback in late spring and summer, but there is a cloud–ice feedback in autumn, which strengthens the ice–albedo feedback. Anomalies in insolation are positively correlated with sea ice variability. This is primarily a result of reduced multiple reflection of insolation due to an albedo decrease. This effect counteracts
the ice-albedo effect up to 50%. ERA-Interim and Ocean Reanalysis System 4 (ORAS4) confirm the main findings from the climate models
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.