Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 496151
Title Disaggregating polyploidy, parental genome dosage and hybridity contributions to heterosis in Arabidopsis thaliana
Author(s) Fort, Antoine; Ryder, Peter; Mckeown, P.C.; Wijnen, Cris; Aarts, M.G.; Sulpice, Ronan; Spillane, Charles
Source New Phytologist 209 (2016)2. - ISSN 0028-646X - p. 590 - 599.
DOI https://doi.org/10.1111/nph.13650
Department(s) Groep KoornneefGroep Koornneef
Laboratory of Genetics
EPS
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Arabidopsis thaliana - Genome dosage - Heterosis - Hybridity - Parental effect - Polyploidy
Abstract

Heterosis is the phenomenon whereby hybrid offspring of genetically divergent parents display superior characteristics compared with their parents. Although hybridity and polyploidy can influence heterosis in hybrid plants, the differential contributions of hybridity vs polyploidy to heterosis effects remain unknown. To address this question, we investigated heterosis effects on rosette size and growth rate of 88 distinct F1 lines of Arabidopsis thaliana consisting of diploids, reciprocal triploids and tetraploids in isogenic and hybrid genetic contexts. 'Heterosis without hybridity' effects on plant size can be generated in genetically isogenic F1 triploid plants. Paternal genome excess F1 triploids display positive heterosis, whereas maternal genome excess F1s display negative heterosis effects. Paternal genome dosage increases plant size in F1 hybrid triploid plants by, on average, 57% (in contrast with 35% increase displayed by F1 diploid hybrids). Such effects probably derive from differential seed size, as the growth rate of triploids was similar to diploids. Tetraploid plants display a lower growth rate compared with other ploidies, whereas hybrids display increased early stage growth rate. By disaggregating heterosis effects caused by hybridity vs genome dosage, we advance our understanding of heterosis in plants and facilitate novel paternal genome dosage-based strategies to enhance heterosis effects in crop plants.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.