Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 496179
Title Durable Late Blight Resistance in Potato Through Dynamic Varieties Obtained by Cisgenesis : Scientific and Societal Advances in the DuRPh Project
Author(s) Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Vossen, J.H.; Visser, R.G.F.
Source Potato Research (2016). - ISSN 0014-3065 - p. 35 - 66.
DOI http://dx.doi.org/10.1007/s11540-015-9312-6
Department(s) PPO/PRI AGRO Toegepaste Plantenecologie
PPO/PRI Biointeractions and Plant Health
PBR Biodiversiteit en Genetische Variatie
Laboratory of Plant Breeding
PRI Bioint Entomology & Disease Management
WUR PB Resistance in Solanaceae
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Cisgenesis - Conventional breeding - Food security - Multi-gene resistance - True-to-type
Abstract

From 2006 through 2015, a research project on Durable Resistance in potato against Phytophthora (DuRPh) was carried out at Wageningen University and Research Centre. Its objective was to develop a proof of principle for durable resistance against late blight by cisgenesis. This public-funded project aimed at stimulating research on genetic modification and public debate on innovative genetic techniques. It was decided to clone and transfer late blight resistance (R) genes of crossable wild potato species (cisgenes) by Agrobacterium tumefaciens-mediated transformation without non-potato genes. A stack of multiple R genes were planned to be inserted into established varieties, thereby creating a dynamic variety in which the composition of the stacks may vary over space and time. Cisgenic plants were selected based on the expression of all inserted R genes and trueness-to-type. Within the project, 13 R genes from wild potato species were genetically mapped and three of them were cloned. Four varieties were transformed with one to three R genes. This was initially done using kanamycin resistance provided by a selectable marker gene of synthetic origin in order to quickly test the performance and stability of the introduced R genes and stacked R gene combinations. Once the functioning thereof was confirmed, marker-free transformations were conducted; thus, true cisgenic events were selected. The results about the different R genes, their chromosomal location, their specificity, the background dependence, the maximum size of a stack, its regeneration time and associated somaclonal variation frequency and its stability were studied. After selection and characterisation in the laboratory, the best cisgenic events were assessed in field trials for late blight resistance. This showed that inserted R genes were capable of turning a susceptible variety into a resistant one. Maximising longevity of the resistance was assured through resistance management research. It was shown that stacking of multiple R genes and monitoring how to deploy these stacks spatially and temporally could reduce fungicide use by over 80%. Communications through media and field demonstrations were manifold to allow public and policymakers to decide if cisgenesis is an acceptable tool to make potato farming more sustainable. Future deployment of the DuRPh strategy will depend largely on its status as a genetically modified crop or its exemption thereof. Worldwide near eradication of late blight would increase global annual potato production by close to 80 million tons, thereby contributing considerably to the needed additional global future food supply.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.