Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
Record number 496314
Title Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism
Author(s) Liemburg-Apers, D.C.; Willems, P.H.G.M.; Koopman, W.J.H.; Grefte, Sander
Source Archives of Toxicology 89 (2015)8. - ISSN 0340-5761 - p. 1209 - 1226.
DOI https://doi.org/10.1007/s00204-015-1520-y
Department(s) Human and Animal Physiology
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) Glucose - GLUT1 - GLUT4 - Mitochondria - Oxidative stress - ROS
Abstract

Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.