Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 496580
Title On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes
Author(s) Pandey, S.; Houweling, S.; Krol, M.; Aben, I.; Röckmann, T.
Source Atmospheric Chemistry and Physics 15 (2015)15. - ISSN 1680-7316 - p. 8615 - 8629.
DOI http://dx.doi.org/10.5194/acp-15-8615-2015
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract

We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2 are multiplied by model-derived total column CO2 and only the resulting CH4 is assimilated, our method assimilates the ratio of CH4 and CO2 directly and is therefore called the ratio method. It is a dual tracer inversion, in which surface fluxes of CH4 and CO2 are optimized simultaneously. The optimization of CO2 fluxes turns the hard constraint of prescribing model-derived CO2 fields into a weak constraint on CO2, which allows us to account for uncertainties in CO2. The method has been successfully tested in a synthetic inversion setup. We show that the ratio method is able to reproduce assumed true CH4 and CO2 fluxes starting from a prior, which is derived by perturbing the true fluxes randomly. We compare the performance of the ratio method with that of the traditional proxy approach and the use of only surface measurements for estimating CH4 fluxes. Our results confirm that the optimized CH4 fluxes are sensitive to the treatment of CO2, and that hard constraints on CO2 may significantly compromise results that are obtained for CH4. We find that the relative performance of ratio and proxy methods have a regional dependence. The ratio method performs better than the proxy method in regions where the CO2 fluxes are most uncertain. However, both ratio and proxy methods perform better than the surface-measurement-only inversion, confirming the potential of spaceborne measurements for accurately determining fluxes of CH4 and other greenhouse gases (GHGs).

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.