Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 496838
Title A Robust Potato Model : LINTUL-POTATO-DSS
Author(s) Haverkort, A.J.; Franke, A.C.; Steyn, J.M.; Pronk, A.A.; Caldiz, D.O.; Kooman, P.L.
Source Potato Research 58 (2015)4. - ISSN 0014-3065 - p. 313 - 327.
Department(s) PPO/PRI AGRO Toegepaste Plantenecologie
Plant Production Systems
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) Climate change - Crop growth modeling - Irrigation - Light use efficiency - Nitrogen - Potassium - Tuber dry matter - Tuber size distribution

In 1994, LINTUL-POTATO was published, a comprehensive model of potato development and growth. The mechanistic model simulated early crop processes (emergence and leaf expansion) and light interception until extinction, through leaf layers. Photosynthesis and respiration in a previous crop growth model—SUCROS—were substituted by a temperature-dependent light use efficiency. Leaf senescence at initial crop stages was simulated by allowing a longevity per daily leaf class formed, and crop senescence started when all daily dry matter production was allocated to the tubers, leaving none for the foliage. The model performed well in, e.g., ideotyping studies. For other studies such as benchmarking production environments, agro-ecological zoning, climatic hazards, climate change, and yield gap analysis, the need was felt to develop from the original LINTUL-POTATO, a derivative LINTUL-POTATO-DSS with fewer equations—reducing the potential sources of error in calculations—and fewer parameters. This reduces the number of input parameters as well as the amount of data required that for many reasons are not available or not reliable. In LINTUL-POTATO-DSS calculating potential yields, initial crop development depends on a fixed temperature sum for ground cover development from 0% at emergence to 100%. Light use efficiency is temperature dependent. Dry matter distribution to the tubers starts at tuber initiation and linearly increases up to a fixed harvest index which is reached at crop end. Crop end is input of the model: it is assumed that the crop cycle determined by maturity matches the length of the available frost-free and or heat-free cropping season. LINTUL-POTATO-DSS includes novel calculations to explore tuber quality characteristics such as tuber size distribution and dry matter concentration depending on crop environment and management.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.