Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 496879
Title Protein Aggregates May Differ in Water Entrapment but Are Comparable in Water Confinement
Author(s) Urbonaite, V.; Jongh, H.H.J. De; Linden, E. Van Der; Pouvreau, L.
Source Journal of Agricultural and Food Chemistry 63 (2015)40. - ISSN 0021-8561 - p. 8912 - 8920.
Department(s) Physics and Physical Chemistry of Foods
FBR Food Technology
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) aggregate density - aggregate size - confined water - entrapped water - soy protein aggregates

Aggregate size and density are related to gel morphology. In the context of the water distribution in complex food systems, in this study, it was aimed to investigate whether protein aggregates varying in size and density differ in entrapped and confined water. Heat-set soy protein aggregates (1%, v/v) prepared in the presence of 3.5 mM divalent salts increased in size and decreased in apparent density following the salt type order MgSO4, MgCl2, CaSO4, and CaCl2. In the absence of applied (centrifugal) forces, larger and less dense aggregates entrap more water. When force is applied from larger and more deformable aggregates, more water can be displaced. Entrapped water of ∼8-13 g of water/g of protein is associated with (pelleted) aggregates, of which approximately 4.5-8.5 g of water/g of protein is not constrained in exchangeability with the solvent. The amount of confined water within aggregates was found to be independent of the aggregate density and accounted for ∼3.5 g of water/g of protein. Confined water in aggregates is hindered in its diffusion because of physical structure constraints and, therefore, not directly exchangeable with the solvent. These insights in the protein aggregate size and deformability in relation to water entrapment and confinement could be used to tune water holding on larger length scales when force is applied.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.