Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 497082
Title Estimating plant traits of grasslands from UAV-acquired hyperspectral images : A comparison of statistical approaches
Author(s) Capolupo, Alessandra; Kooistra, Lammert; Berendonk, Clara; Boccia, Lorenzo; Suomalainen, Juha
Source ISPRS International Journal of Geo-Information 4 (2015)4. - ISSN 2220-9964 - p. 2792 - 2820.
Department(s) Laboratory of Geo-information Science and Remote Sensing
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) Grassland traits - Partial least squares regression (PLSR) - Spectroscopy - Unmanned aerial vehicle (UAV) - Vegetation indices

Grassland ecosystems cover around 40% of the entire Earth's surface. Therefore, it is necessary to guarantee good grassland management at field scale in order to improve its conservation and to achieve optimal growth. This study identified the most appropriate statistical strategy, between partial least squares regression (PLSR) and narrow vegetation indices, for estimating the structural and biochemical grassland traits from UAV-acquired hyperspectral images. Moreover, the influence of fertilizers on plant traits for grasslands was analyzed. Hyperspectral data were collected from an experimental field at the farm Haus Riswick, near Kleve in Germany, for two different flight campaigns in May and October. The collected image blocks were geometrically and radiometrically corrected for surface reflectance. Spectral signatures extracted for the plots were adopted to derive grassland traits by computing PLSR and the following narrow vegetation indices: the MERIS Terrestrial Chlorophyll Index (MTCI), the ratio of the Modified Chlorophyll Absorption in Reflectance and Optimized Soil-Adjusted Vegetation Index (MCARI/OSAVI) modified by Wu, the Red-edge Chlorophyll Index (CIred-edge), and the Normalized Difference Red Edge (NDRE). PLSR showed promising results for estimating grassland structural traits and gave less satisfying outcomes for the selected chemical traits (crude ash, crude fiber, crude protein, Na, K, metabolic energy). Established relations are not influenced by the type and the amount of fertilization, while they are affected by the grassland health status. PLSR is found to be the best strategy, among the approaches analyzed in this paper, for exploring structural and biochemical features of grasslands. Using UAV-based hyperspectral sensing allows for the highly detailed assessment of grassland experimental plots.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.