Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 497112
Title Elevated CO2 increased phosphorous loss from decomposing litter and soil organic matter at two FACE experiments with trees
Author(s) Hoosbeek, Marcel R.
Source Biogeochemistry 127 (2016)1. - ISSN 0168-2563 - p. 89 - 97.
DOI https://doi.org/10.1007/s10533-015-0169-1
Department(s) Chair Soil Chemistry and Chemical Soil Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Elevated CO - FACE experiment - Litter and soil stoichiometry - Secondary forest growth - Soil phosphorous
Abstract

Sustained increased productivity of trees growing in elevated CO2 depends in part on their stoichiometric flexibility, i.e., increasing their nutrient use efficiency, or on increased nutrient uptake from the soil. Phosphorus (P) may be a nutrient as limiting as nitrogen (N) in terrestrial ecosystems and may play a key-process in global terrestrial C storage. For this study archived litter and soil samples of two free air CO2 enrichment (FACE) experiments were analyzed for C, N and P. Populus euramericana, nigra and alba and Betula pendula, Alnus glutinosa and Fagus sylvatica were grown in ambient and elevated CO2 at respectively the Euro- and BangorFACE experiments. At EuroFACE, aboveground litter accumulated in L, F and H layers, while at BangorFACE almost all aboveground litter was incorporated into the mineral soil due to bioturbation. At EuroFACE, more P was lost from the F and H litter layers due to trees growing in elevated CO2, while at BangorFACE more P was lost from the mineral soil. Results of this study imply that trees growing in elevated CO2 were P limited at both experiments. Therefore, with increasing atmospheric CO2, P may play a more pronounced role than previous thought in regulating secondary forest growth. Moreover, increased atmospheric CO2 and ample N may allow a larger pool of P to become available for uptake due to, for instance, increased phosphatase activity resulting in increased organic matter turnover and biogenic weathering. Therefore, it may be postulated that under non-N-limited conditions, e.g., during regrowth, under high N deposition or in systems with high N2-fixation, increased P availability and uptake may allow P-limited forests to sustain increased growth under increasing atmospheric CO2.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.